Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules
نویسندگان
چکیده
We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis.
منابع مشابه
How topoisomerase IV can efficiently unknot and decatenate negatively supercoiled DNA molecules without causing their torsional relaxation
Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled D...
متن کاملPredicting Knot or Catenane Type of Site-specific Recombination Products Dorothy Buck and Erica Flapan
Site-specific recombination on supercoiled circular DNA yields a variety of knotted or catenated products. We develop a model of this process, and give extensive experimental evidence that the assumptions of our model are reasonable. We then characterize all possible knot or catenane products that arise from the most common substrates. We apply our model to tightly prescribe the knot or catenan...
متن کاملPredicting knot or catenane type of site-specific recombination products.
Site-specific recombination on supercoiled circular DNA yields a variety of knotted or catenated products. Here, we present a topological model of this process and characterize all possible products of the most common substrates: unknots, unlinks, and torus knots and catenanes. This model tightly prescribes the knot or catenane type of previously uncharacterized data. We also discuss how the mo...
متن کاملGeneration of supercoils in nicked and gapped DNA drives DNA unknotting and postreplicative decatenation
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerase...
متن کاملTightening of DNA knots by supercoiling facilitates their unknotting by type II DNA topoisomerases.
Using numerical simulations, we compare properties of knotted DNA molecules that are either torsionally relaxed or supercoiled. We observe that DNA supercoiling tightens knotted portions of DNA molecules and accentuates the difference in curvature between knotted and unknotted regions. The increased curvature of knotted regions is expected to make them preferential substrates of type IIA topois...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015